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Exercice 1 : Un atome “muonique”

Nous savons que le rayon de Bohr pour un électron qui orbite autour d’un proton vaut :

a =
4πε0~2

me2
= 5.3 · 10−11m

Pour un µ -méson dont la masse est 207 fois plus grande et pour un noyau de xénon de charge Z = 54
nous avons donc aZ,µ = a0

207·Z = 4.74 · 10−15m. Le rayon du noyau de Xe vaut R = r0(131)1/3 =
6.2 · 10−15m donc R/aZ,µ = 1.31 et un muon se trouve plutôt à l’intérieur du noyau. La probabilité
de trouver un µ− - méson à l’intérieur du noyau (c’est a dire entre r = 0 et r = R ) est donnée par
l intégrale :

p =

∫ R

0

4πr2ψ2
1s(r)dr =

4

a3

∫ R

0

r2 exp(−2r/a)dr

Nous avons :∫ x

0

r2 exp(−2r/a)dr = −ax
2

2
exp(−2x/a)− a2x

2
exp(−2x/a)− a3

4
exp(−2x/a) +

a3

4
.

Donc

4

a3

∫ R

0

r2 exp(−2r/a)dr = −2R2

a2
exp(−2R/a)− 2R

a
exp(−2R/a)− exp(−2R/a) + 1 = 0.49

Puisque le muon est très proche du noyau, on peut considérer le noyau + le muon comme un
noyau effectif de charge Z − 1. Ce noyau effectif a un plus grand rayon que le noyau initial, mail
il reste petit comparé à la taille de l’atome. En prenant en compte les Z − 1 électrons restant, les
caractéristiques chimiques de cet atome sont donc plus proches de celles de l’atome d’iode.

Exercice 2 : Atome d’hydrogène : Effet de la masse réduite

La masse réduite du positronium est plus petite que celle de l’hydrogène, donc l’énergie du
photon sera plus petite pour le positronium que pour l’hydrogène. Cela signifie que la longueur
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d’onde du photon émis sera plus grande que 656.3 nm. D’un autre côté, l’hélium a à peu près la
même masse réduite mais plus de charges que l’hydrogène, donc sa transition d’énergie sera plus
grande, correspondant à une longueur d’onde plus petite que 656.3 nm. Tous les facteurs de l’équa-
tion donnée sont constants pour ce problème à part pour la masse réduite et la charge nucléaire.
Par conséquent, la longueur d’onde correspondant à la différence d’énergie pour la transition peut
être trouvée simplement à partir des ratios des variables de masses et de charges.
Pour l’hydrogène,

mu =
mpme

mp +me

≈ me

L’énergie du photon est ∆E = E3 − E2.
Sa longueur d’onde est λ = 656.3 nm, où λ = c

f
= hc

∆E
.

(a) Pour le positronium, µ = meme

me+me
= me

2
,

donc l’énergie de chaque niveau est la moitié de celle de l’hydrogène. L’énergie du photon est
inversement proportionnelle à sa longueur d’onde, donc pour le positronium,

λ32 = 2(656.3 nm) = 1.31µm

(dans la région infrarouge)

(b) Pour He+, µ ≈ me, q1 = e and q2 = 2e, donc la transition d’énergie est 22 = 4 fois plus grande
que celle de l’hydrogène. Ensuite, λ32 =

(
656
4

)
nm = 164 nm (dans la région des ultraviolets).

Exercice 3 : Les isotopes

1. Pour une transition de ni à nf ,

∆EH = −µHk2
ee

4

2~2

(
1

n2
f

− 1

n2
i

)
=

hc

λH

et

∆ED = −µDk
2
ee

4

2~2

(
1

n2
f

− 1

n2
i

)
=
hc

λD

où µH = memp

me+mp
et µD = memD

me+mD
.

Par division,
∆EH

∆ED

=
µH

µD

=
λD

λH

ou
λD =

(
µH

µD

)
λH

.
Puis, λH − λD =

(
1− µH

µD

)
λH

2



2.
µH
µD

=

(
memp

me +mp

)(
me +mD

memD

)
= 0.999728

λH − λD = (1− 0.999728)(656.3 nm) = 0.179 nm

Exercice 4 : Le rayon de l’atome d’hydrogène

1. Il ne faut pas imaginer l’électron en orbite autour du proton comme dans la théorie de Bohr
de l’atome d’hydrogène. Imaginez plutôt la charge de l’électron dispersée dans l’espace autour
du proton dans un nuage électronique avec une symétrie sphérique. Puisque l’énoncé demande
"la valeur la plus probable de r", nous allons utiliser l’approche quantique. (Dans l’atome de
Bohr, l’électron bouge dans une orbite avec un valeur exacte de r).
La valeur la plus probable de r correspond au maximum dans le plot de P1s(r) versus r. Nous
pouvons évaluer la valeur la plus probable de r en posant dP1s/dr = 0 et en résolvant pour
r. On fait la dérivée et on pose le résultat égal à zéro :

dP1s

dr
=

d

dr

[(
4r2

a3
0

)
e−2r/a0

]
= 0

e−2r/a0
d

dr

(
r2
)

+ r2 d

dr

(
e−2r/a0

)
= 0

2re−2r/a0 + r2 (−2/a0) e−2r/a0 = 0

2r [1− (r/a0)] e−2r/a0 = 0

On met l’expression entre parenthèses égale à zéro et on résout pour r :

1− r

a0

= 0→ r = a0

La valeur la plus probable de r est le rayon de Bohr ! L’équation est aussi satisfaite à r = 0
et quand r →∝. Ces points correspondent à la probabilité minimum, qui est nulle.

2. La probabilité est trouvée en intégrant la fonction de densité de la probabilité radiale P1s(r)
pour cet état du rayon de Bohr, de a0 à ∞.

P =

∫ ∞
a0

P1s(r)dr =
4

a3
0

∫ ∞
a0

r2e−2r/a0dr

Il faut mettre l’intégrale dans une forme sans dimension en changeant les variables de r à
z = 2r/a0, en notant que z = 2 quand r = a0 et que dr = (a0/2) dz :

P =
4

a0
3

∫ ∞
2

(za0

2

)2

e−z
(a0

2

)
dz =

1

2

∫ ∞
2

z2e−zdz

On évalue l’intégrale en utilisant l’intégration partielle :
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P = − 1

2

(
z2 + 2z + 2

)
e−z
∣∣∣∣∞
2

(1)

On évalue ensuite entre les limites :

P = 0−
[
−1

2
(4 + 4 + 2)e−2

]
= 5e−2 = 0.677 or 67.7%

Cette probabilité est plus grande que 50%. La raison de cette valeur est l’assymétrie dans la
fonction de densité de probabilité radiale, qui a plus d’aire à droite du pic qu’à gauche.

3. La valeur moyenne de r est la même que la valeur attendue pour r.

ravg =< r >=

∫ ∞
0

rP (r)dr =

∫ ∞
0

r

(
4r2

a0
3

)
e−2r/a0dr

=

(
4

a0
3

)∫ x

0

r3e−2r/a0dr

ravg =

(
4

a3
0

)(
3!

(2/a0)4

)
=

3

2
a0

De nouveau, la valeur moyenne est plus grande que la valeur la plus probable en raison de
l’asymétrie de la fonction d’onde.

Exercice 5 : Question de type examen

En suivant la même procédure que dans l’exercice précédent,

Prob[0 ≤ r ≤ rp] =

∫ rp

0

4r2

a3
0

e−2r/a0 (2)

Nous effectuons le même changement de variable, c’est-à-dire z = 2r/a0. Notez que dans ce cas,
l’intégrale est de r = 0 à r = rp, et donc de z = 0 à z = 2rp/a0. En réalisant l’intégration, nous
obtenons une équation équivalente à (1) :

Prob[0 ≤ r ≤ rp] = − 1

2

(
z2 + 2z + 2

)
e−z
∣∣∣∣2rp/a0
0

= 1− e−2rp/a0 − 2rp
a0

e−2rp/a0 −
2r2

p

a2
0

e−2rp/a0 (3)

En substituant la valeur numérique de rp, nous arrivons à Prob[0 ≤ r ≤ rp] ≈ 5.2 · 10−15

Exercice 6 : Question de type examen

Nous définissons R = 4a0. La probabilité est alors égale

P =

∫ ∞
R

dr
r2

8a3
0

(
4 +

r2

a2
0

− 4
r

a0

)
e−r/a0 (4)

En définissant les intégrales
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In =

∫ ∞
R/a

dt tne−t (5)

et en effectuant un changement de variables, la probabilité se ré-écrit comme

P =
I2

2
+
I4

8
− I3

2
. (6)

Nous devons maintenant simplement calculer In avec les expressions données,

I2 = 26e−4 I3 = 142e−4 I2 = 824e−4

Par conséquent,

P = e−4 ·
(

26

2
+

824

8
− 142

2

)
≈ 82.4% (7)
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